Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9448, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658607

RESUMO

We propose a recipe for demonstrating an autonomous quantum heat engine where the working fluid consists of a harmonic oscillator, the frequency of which is tuned by a driving mode. The working fluid is coupled two heat reservoirs each exhibiting a peaked power spectrum, a hot reservoir peaked at a higher frequency than the cold reservoir. Provided that the driving mode is initialized in a coherent state with a high enough amplitude and the parameters of the utilized optomechanical Hamiltonian and the reservoirs are appropriate, the driving mode induces an approximate Otto cycle for the working fluid and consequently its oscillation amplitude begins to increase in time. We build both an analytical and a non-Markovian quasiclassical model for this quantum heat engine and show that reasonably powerful coherent fields can be generated as the output of the quantum heat engine. This general theoretical proposal heralds the in-depth studies of quantum heat engines in the non-Markovian regime. Further, it paves the way for specific physical realizations, such as those in optomechanical systems, and for the subsequent experimental realization of an autonomous quantum heat engine.

2.
Nat Commun ; 14(1): 5100, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644013

RESUMO

Monopoles and vortices are fundamental topological excitations that appear in physical systems spanning enormous scales of size and energy, from the vastness of the early universe to tiny laboratory droplets of nematic liquid crystals and ultracold gases. Although the topologies of vortices and monopoles are distinct from one another, under certain circumstances a monopole can spontaneously and continuously deform into a vortex ring with the curious property that monopoles passing through it are converted into anti-monopoles. However, the observation of such Alice rings has remained a major challenge, due to the scarcity of experimentally accessible monopoles in continuous fields. Here, we present experimental evidence of an Alice ring resulting from the decay of a topological monopole defect in a dilute gaseous 87Rb Bose-Einstein condensate. Our results, in agreement with detailed first-principles simulations, provide an unprecedented opportunity to explore the unique features of a composite excitation that combines the topological features of both a monopole and a vortex ring.

3.
Nat Commun ; 13(1): 6895, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371435

RESUMO

Superconducting qubits seem promising for useful quantum computers, but the currently wide-spread qubit designs and techniques do not yet provide high enough performance. Here, we introduce a superconducting-qubit type, the unimon, which combines the desired properties of increased anharmonicity, full insensitivity to dc charge noise, reduced sensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. In agreement with our quantum models, we measure the qubit frequency, ω01/(2π), and increased anharmonicity α/(2π) at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13 ns single-qubit gates on two qubits with (ω01, α) = (4.49 GHz, 434 MHz) × 2π and (3.55 GHz, 744 MHz) × 2π, respectively. The energy relaxation seems to be dominated by dielectric losses. Thus, improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible useful quantum advantage with noisy systems.

4.
Sci Rep ; 12(1): 6822, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474123

RESUMO

Processes that lead to the critical-current suppression and change of impedance of a superconductor under the application of an external voltage is an active area of research, especially due to various possible technological applications. In particular, field-effect transistors and radiation detectors have been developed in the recent years, showing the potential for precision and sensitivity exceeding their normal-metal counterparts. In order to describe the phenomenon that leads to the critical-current suppression in metallic superconducting structures, a field-effect hypothesis has been formulated, stating that an electric field can penetrate the metallic superconductor and affect its characteristics. The existence of such an effect would imply the incompleteness of the underlying theory, and hence indicate an important gap in the general comprehension of superconductors. In addition to its theoretical value, a complete understanding of the phenomenon underneath the electric-field response of the superconductor is important in the light of the related technological applications. In this paper, we study the change of the characteristics of a superconductor implementing a coplanar-waveguide resonator as a tank circuit, by relating our measurements to the reactance and resistance of the material. Namely, we track the state of the superconductor at different voltages and resulting leakage currents of a nearby gate electrode which is not galvanically connected to the resonator. By comparing the effects of the leakage current and of a change in the temperature of the system, we conclude that the observed behaviour in the superconductor is mainly caused by the heat that is deposited by the leakage current, and bearing the experimental uncertainties, we are not able to observe the effect of the applied electric field in our sample. In addition, we present a relatively good quantitative agreement between the Mattis-Bardeen theory of a heated superconductor and the experimental observations. Importantly, we do not claim this work to nullify the results of previous works, but rather to provide inspiration for future more thorough experiments and analysis using the methods presented here.

5.
EPJ Quantum Technol ; 8(1): 5, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33649744

RESUMO

Quantum computing holds the potential to deliver great economic prosperity to the European Union (EU). However, the creation of successful business in the field is challenging owing to the required extensive investments into postdoctoral-level workforce and sophisticated infrastructure without an existing market that can financially support these operations. This commentary paper reviews the recent efforts taken in the EU to foster the quantum-computing ecosystem together with its current status. Importantly, we propose concrete actions for the EU to take to enable future growth of this field towards the desired goals. In particular, we suggest ways to enable the creation of EU-based quantum-computing unicorns which may act as key crystallization points of quantum technology and its commercialization. These unicorns may provide stability to the otherwise scattered ecosystem, thus pushing forward global policies enabling the global spread of EU innovations and technologies. The unicorns may act as a conduit, through which the EU-based quantum ecosystem can stand out from similar ecosystems based in Asia and the United States. Such strong companies are required because of the level of investment currently required in the marketplace. This paper suggests methodologies and best practices that can enhance the probability of the creation of the unicorns. Furthermore, we explore future scenarios, in which the unicorns can operate from the EU and to support the EU quantum ecosystem. This exploration is conducted focusing on the steps to be taken and on the impact the companies may have in our opinion.

6.
Phys Rev Lett ; 122(8): 080503, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932559

RESUMO

We theoretically propose and experimentally implement a method of measuring a qubit by driving it close to the frequency of a dispersively coupled bosonic mode. The separation of the bosonic states corresponding to different qubit states begins essentially immediately at maximum rate, leading to a speedup in the measurement protocol. Also the bosonic mode can be simultaneously driven to optimize measurement speed and fidelity. We experimentally test this measurement protocol using a superconducting qubit coupled to a resonator mode. For a certain measurement time, we observe that the conventional dispersive readout yields close to 100% higher average measurement error than our protocol. Finally, we use an additional resonator drive to leave the resonator state to vacuum if the qubit is in the ground state during the measurement protocol. This suggests that the proposed measurement technique may become useful in unconditionally resetting the resonator to a vacuum state after the measurement pulse.

7.
Nano Lett ; 18(7): 4141-4147, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29916248

RESUMO

In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency-dependent features in the pumped current.

8.
Sci Adv ; 4(3): eaao3820, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29511735

RESUMO

Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion-a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system.

9.
Sci Rep ; 8(1): 3966, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500368

RESUMO

We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.

10.
Sci Rep ; 7(1): 14713, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116119

RESUMO

We introduce a magnetic-flux-tunable phase shifter for propagating microwave photons, based on three equidistant superconducting quantum interference devices (SQUIDs) on a transmission line. We experimentally implement the phase shifter and demonstrate that it produces a broad range of phase shifts and full transmission within the experimental uncertainty. Together with previously demonstrated beam splitters, this phase shifter can be utilized to implement arbitrary single-qubit gates for qubits based on propagating microwave photons. These results complement previous demonstrations of on-demand single-photon sources and detectors, and hence assist in the pursuit of an all-microwave quantum computer based on propagating photons.

11.
Front Physiol ; 8: 341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603501

RESUMO

Background: The data on cardiac remodeling outside the scope of myocardial infarction and heart failure are limited. Methods: A cohort of middle-aged hypertensive subjects with age- and gender-matched control subjects without hypertension (n = 1,045, aged 51 ± 6 years) were randomly selected for the OPERA study (Oulu Project Elucidating Risk of Atherosclerosis study). The majority of those who were still alive after more than 20 years of follow-up underwent thorough re-examinations. Results: Left ventricular mass index (LVMI) increased significantly from 106.5 ± 27.1 (mean ± SD) to 114.6 ± 29.1 g/m2 (p < 0.001), the thickness of the left ventricular posterior wall (LVPW) from 10.0 ± 1.8 to 10.6 ± 1.7 mm (p < 0.001), fractional shortening (FS) from 35.0 ± 5.7 to 38.4 ± 7.2 % (p < 0.001), and left atrial diameter (LAD) from 38.8 ± 5.2 to 39.4 ± 6.7 mm (p = 0.028) during the 20-year follow-up. After multivariate adjustments, hypertension treated with antihypertensive medication and male gender predicted a smaller increase in the thickness of LVPW (p = 0.017 to <0.001). Baseline higher fasting plasma insulin level, larger intima media thickness of the carotid artery, greater height and antihypertensive medication (p = 0.046-0.002) predicted a smaller (less favorable) change of FS. The increase of LAD was associated with higher baseline diastolic blood pressure (p = 0.034) and greater height (p = 0.006). Conclusion: Aging from middle age to senescence increases the echocardiographic indexes of LVMI, LVPW thickness, FS and LAD. Several baseline factors are associated with these changes.

12.
Nat Commun ; 8: 15189, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480900

RESUMO

Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

13.
Sci Rep ; 6: 36381, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27821861

RESUMO

Semiconductor-based quantum dot single-electron pumps are currently the most promising candidates for the direct realization of the emerging quantum standard of the ampere in the International System of Units. Here, we discuss a silicon quantum dot single-electron pump with radio frequency control over the transparencies of entrance and exit barriers as well as the dot potential. We show that our driving protocol leads to robust bidirectional pumping: one can conveniently reverse the direction of the quantized current by changing only the phase shift of one driving waveform with respect to the others. We anticipate that this pumping technique may be used in the future to perform error counting experiments by pumping the electrons into and out of a reservoir island monitored by a charge sensor.

14.
Nat Phys ; 12(5): 460-464, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27239219

RESUMO

The emerging quantum technological apparatuses1, 2, such as the quantum computer3-6, call for extreme performance in thermal engineering7. Cold distant heat sinks are needed for the quantized electric degrees of freedom due to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance8-10. However, the short distance between the heat-exchanging bodies in the previous experiments11-14 hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics15-17 which provides a basis for the superconducting quantum computer18-21. Especially, our results facilitate remote cooling of nanoelectronic devices using far-away in-situ-tunable heat sinks22, 23. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics24, 25. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications26.

15.
Am J Cardiol ; 116(9): 1374-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26341186

RESUMO

Factors in the middle age that are associated with the risk for development of diastolic dysfunction in long term are not fully established. The Oulu Project Elucidating Risk of Atherosclerosis OPERA study randomly selected middle-aged subjects with hypertension and age- and gender-matched control subjects (n = 1,045, age 51 ± 6 years, men 49.8%). After >20 years of follow-up, majority of the subjects still alive were available for reexaminations (n = 600). After excluding the subjects with mitral regurgitation, left ventricular ejection fraction <50%, and those from whom echocardiographic septal E/E' could not be reliably measured, the present analysis included 460 subjects. E/E' was divided into 3 subgroups (subgroup 1: E/E' ≤8, subgroup 2: 8 < E/E' < 15, subgroup 3: E/E' ≥15), subgroup 3 suggesting a significant diastolic dysfunction. Several baseline variables were associated with diastolic dysfunction: greater age (p = 0.001), female gender (p = 0.001), shorter height (p <0.001), larger body mass index (p = 0.008), greater systolic blood pressure (p = 0.001), greater pulse pressure (p <0.001), lower baroreflex sensitivity (p = 0.007), lower estimated glomerular filtration rate (p = 0.02), greater atrial natriuretic peptide (p = 0.001), greater fasting plasma glucose (p = 0.001), more common occurrence of diabetes (p = 0.011), and more common usage of antihypertensive medication (p = 0.001). After adjustments in the multivariate model, only systolic blood pressure (p = 0.001), shorter height (p = 0.002), and estimated glomerular filtration rate (p = 0.006) retained a significant association with the risk of developing diastolic dysfunction. In conclusion, greater systolic blood pressure, short height, and lower estimated glomerular filtration rate of the middle-aged subjects were the main determinants of development of diastolic dysfunction during a 20-year follow-up.


Assuntos
Pressão Sanguínea , Estatura , Diástole , Ecocardiografia , Taxa de Filtração Glomerular , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/epidemiologia , Adulto , Distribuição por Idade , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Fator Natriurético Atrial/sangue , Biomarcadores/sangue , Glicemia/metabolismo , Índice de Massa Corporal , Complicações do Diabetes/epidemiologia , Ecocardiografia/métodos , Feminino , Finlândia/epidemiologia , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prevalência , Estudos Prospectivos , Fatores de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Distribuição por Sexo , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/fisiopatologia
16.
J Vis Exp ; (100): e52852, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26067215

RESUMO

As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization.


Assuntos
Óxido de Alumínio/química , Alumínio/química , Elétrons , Pontos Quânticos/química , Semicondutores , Dióxido de Silício/química , Silício/química , Desenho de Equipamento , Eletricidade Estática
17.
Nano Lett ; 14(6): 3405-11, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24823277

RESUMO

Nanoscale single-electron pumps can be used to generate accurate currents, and can potentially serve to realize a new standard of electrical current based on elementary charge. Here, we use a silicon-based quantum dot with tunable tunnel barriers as an accurate source of quantized current. The charge transfer accuracy of our pump can be dramatically enhanced by controlling the electrostatic confinement of the dot using purposely engineered gate electrodes. Improvements in the operational robustness, as well as suppression of nonadiabatic transitions that reduce pumping accuracy, are achieved via small adjustments of the gate voltages. We can produce an output current in excess of 80 pA with experimentally determined relative uncertainty below 50 parts per million.

18.
Nature ; 467(7316): 687-91, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20877281

RESUMO

The size of silicon transistors used in microelectronic devices is shrinking to the level at which quantum effects become important. Although this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin in silicon can represent a well-isolated quantum bit with long coherence times because of the weak spin-orbit coupling and the possibility of eliminating nuclear spins from the bulk crystal. However, the control of single electrons in silicon has proved challenging, and so far the observation and manipulation of a single spin has been impossible. Here we report the demonstration of single-shot, time-resolved readout of an electron spin in silicon. This has been performed in a device consisting of implanted phosphorus donors coupled to a metal-oxide-semiconductor single-electron transistor-compatible with current microelectronic technology. We observed a spin lifetime of ∼6 seconds at a magnetic field of 1.5 tesla, and achieved a spin readout fidelity better than 90 per cent. High-fidelity single-shot spin readout in silicon opens the way to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.

19.
Nano Lett ; 10(1): 11-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19950969

RESUMO

We have developed nanoscale double-gated field-effect-transistors for the study of electron states and transport properties of single deliberately implanted phosphorus donors. The devices provide a high-level of control of key parameters required for potential applications in nanoelectronics. For the donors, we resolve transitions corresponding to two charge states successively occupied by spin down and spin up electrons. The charging energies and the Lande g-factors are consistent with expectations for donors in gated nanostructures.

20.
Phys Rev Lett ; 103(3): 030401, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19659254

RESUMO

We demonstrate theoretically that, by using external magnetic fields, one can imprint pointlike topological defects on the spin texture of a dilute Bose-Einstein condensate. The symmetries of the condensate order parameter render this topological defect to be accompanied with a vortex filament corresponding to the Dirac string of a magnetic monopole. The vorticity in the condensate coincides with the magnetic field of a magnetic monopole, providing an ideal analogue to the monopole studied by Dirac.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...